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ABSTRACT

The D-â-ribo, D-â-xylo, L-r-lyxo, and L-r-arabino members of the pentopyranosyl (4′f2′) oligonucleotide family show efficient intersystem
cross-pairing among each other. This family of configurationally isomeric and conformationally well-defined pairing systems offers an opportunity
to study structural factors that determine cross-communication between informational oligonucleotide systems of different backbone structure.

Pentopyranosyl (4′f2′) oligonucleotides constitute a family
of isomeric nucleic acid systems which differ from natural
nucleic acids in that they contain aldopentose building blocks
in the pyranose (instead of furanose) form and have the
phosphodiester junction between sugar carbons 2′ and 4′
(instead of 3′ and 5′) (Figure 1). In the context of a systematic
study,3 we had synthesized theD-â-ribo-, D-â-xylo-, L-R-
lyxo-, and theD-R-arabinopyranosyl oligonucleotides, studied
their base-pairing properties in comparison to RNA, and
found that all four members show stronger Watson-Crick
base-pairing than RNA itself,4 theR-arabinopyranosyl (4′f2′)
system even being one of the strongest oligonucleotide
pairing systems encountered thus far.5 We had also observed

examples of intersystem cross-pairing within the family of
pentopyranosyl oligonucleotides.4 Here we report results of
a systematic cross-pairing study which, inter alia, also
includes the so far missingL series of theR-arabinopyranosyl
system.6

Table 1 summarizes duplex melting temperatures (Tm

values in°C) of intrasystem pairing andintersystem cross-
pairing of the nonselfcomplementary base sequences A8 +
T8, A12 + T12, 4′-TATTTTAA-2′ + 4′-TTAAAATA-2′ and
4′-ATTCAGCG-2′+ 4′-CGCTGAAT-2′, as determined by
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temperature-dependent UV spectroscopy under standard
conditions (ca. 5+ 5 µM, 1.0 M NaCl, 0.01 M NaH2PO4,
pH 7.0). Figure 2 shows representative examples ofTm

curves, all showing no hysteresis.Intrasystem pairing
duplexes (Tm values in Table 1 in shaded diagonal) were
also characterized by temperature-dependent CD spectros-
copy (Figure 3) and by thermodynamic data7 (Table 2). For

Table 1. Tm Values of Duplexes Formed by Cross-Pairing in
the Family of Pentopyranosyl (4′f2′) Oligonucleotidesa

a Conditions: c ) 5 + 5 µM, 1.0 M NaCl, 0.01 M NaH2PO4, 0.1 mM
Na2EDTA, pH 7.0; error ofTm determination estimated(0.5 °C. Tm of
pa(T12)•pa(A12) is ca. 95°C measured in 0.15 M NaCl; some of the data
are taken from ref 4. Legend: pr) D-â-ribopyranosyl, px) D-â-
xylopyranosyl, pl) L-R-lyxopyranosyl, pa) L-R-arabinopyranosyl, and r
) D-â-ribofuranosyl (5′f3′) (RNA). The color of the symbols relates to
oligonucleotide sequences of the same color in the formulas of duplexes
I-IV given at the bottom of the table.Tm values in black refer tointersystem
cross-pairing and those in shaded diagonal tointrasystem cross-pairing;
Tm values in color refer toself-pairing of corresponding strands. Symbols:
(-) no pairing observed; (•) not investigated; numbers in brackets refer to
borderline observations.

Figure 1. Idealized base-pairing conformations of the four
pentopyranosyl (4′f2′) oligonucleotide systems investigated. For
the conformational analysis of such systems see refs 6 and 16. The
arrow symbolw points to severe steric interaction expected to
induce a major deviation from the idealized pairing conformation
in the actual duplexes. For an NMR structure analysis in the
ribopyranosyl series see ref 9.

Figure 2. UV Tm curves (heating) of intrasystem-pairing duplexes
(4′-TTAAAATA-2 ′) + (4′-TATTTTAA-2 ′) of the four pento-
pyranosyl (4′f2′) oligonucleotide systems. For conditions see the
footnote of Table 1. Curves obtained on cooling are essentially
identical with curves obtained on heating.Tm values are derived
from maxima of the first-derivative curve (software Kaleidagraph).
For method and interpretation see ref 7.

Figure 3. Temperature-dependent CD curves of a duplex formation
in D-â-ribopyranosyl (4′f2′) andL-R-lyxopyranosyl (4′f2′) series.
Temperature ranges are 6-90 and 6-78 °C, respectively. For
conditions see the footnote of Table 1.
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combinations whereintersystem cross-pairing competes with
comparably strong self-pairing of one or both partner strands,
intersystem duplex formation was confirmed by measure-
ment8 of mixing curves (Figure 4).

The data demonstrate thatintersystem cross-pairing within
the (4′f2′) pentopyranosyl family occurs irrespective of
whether the partner strands contain homobasic sequences,
irregular adenine-thymine sequences, or sequences that

include cytosine and guanine. This behavior points to the
capability of all members of the (4′f2′) pentopyranosyl
family to adopt a common type of duplex structure, which
we expect to correspond to the weakly twisted ladder
structure deduced for the pyranosyl-RNA duplex (4′-
CGAATTCG-2′) by NMR structure analysis.9 The overall
consistency within the cross-pairing data demands that the
pairing mode in all four pentopyranosyl systems must be
Watson-Crick, the mode that has been shown to operate in
the ribopyranosyl series.9

The thermal stabilities of the intersystem cross-pairing
duplexes reflect the configurational and conformational
differences of their respective partner strands.Tm values are
similar to those of the correspondingintrasystem pairing
duplexes, provided that both partner systems have the
equatorial4′-phosphodiester conformation. When this con-
formation is axial,Tm’s are lower; they are lower still when
the conformation is axial in one partner and equatorial in
the other. In such combinations,intersystem cross-pairings
between sequences An and Tn (n ) 8 and 12) show a
remarkably regular dependence of theTm values on constitu-
tion: duplexes show consistently lower thermal stabilities
when the all-pyrimidine strand (as opposed to the all-purine
strand) has the equatorial 4′-phosphodiester conformation
(Table 3). A reason for this may be sought in the following:

paired pentopyranosyl (4′f2′) strands with an equatorial 4′-
phosphodiester conformation have a larger backbone inclina-
tion2,9 than strands in which this conformation is axial (see

(7) Marky, L. A.; Breslauer, K. J.Biopolymers1987,26, 1601.
(8) Cantor, C. R.; Schimmel, P. R.Biophysical Chemistry; Freeman: San

Francisco, CA, 1980; Part III (The Behavior of Biological Macromolecules),
pp 1135-1139.

(9) Schlönvogt, I.; Pitsch, S.; Lesueur, C.; Eschenmoser, A.; Jaun, B.;
Wolf, R. M. HelV. Chim. Acta1996,79, 2316.

Table 2. Tm and Thermodynamic Data of Pentopyranosyl
(4′f2′) Oligonucleotide Duplexesa

a Determined at 0.15 M NaCl; for buffer conditions see caption of Table
1. Thermodynamic data from plots ofTm

-1 versus Ln (c);7 experimental
error estimated in∆H values(5%. For data of other duplexes see ref 4.

Figure 4. Mixing curve8 for the pairing betweenD-â-xylopyran-
osyl-(4′-TTAAAATA-2′)- and L-R-arabinopyranosyl-(4′-TATTT-
TAA-2′) (c ) 5 µM in 1 M NaCl, 0.01 M NaH2PO4, 0.1 mM
Na2EDTA, pH 7.0;T ) 20 °C).

Table 3. Regularities Observed for the Stabilities of
Cross-Pairing Duplexes An‚Tn (n) 8, 12) (Excerpts from
Table 1)a

a Duplexes show consistently higher thermal stabilities when the all-
pyrimidine strand (as opposed to the all-purine strand) has the axial 4′-
phosphodiester conformation.
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Figure 1 and ref 2). Inintersystem cross-pairing, backbones
with a larger (p-RNA-like) inclination can adapt to partner
backbones with a smaller inclination by changing the
nucleosidic torsion angles toward less negative values, and
vice versa.10 Such an adaption can be expected to be easier
for purine strands than for pyrimidine strands, since pyrim-
idines are known to be sterically more constrained than
purines with respect to variation of nucleosidic torsion
angles.11

Although the base sequences chosen for our cross-pairing
studies were specifically intended to be nonselfcomplemen-
tary, some of them show remarkably strong self-pairing. In
theR-arabinopyranosyl system, the all-pyrimidine sequences
pa(T8) and pa(T12) undergo T-T self-pairing (Tm ) 27 and
52 °C, respectively, under standard conditions), in marked
contrast to the corresponding all-adenine oligomers, which
show hardly any self-association (Table 1).12 Furthermore,
the mixed A,T sequences of duplex type III (Table 1) show
self-pairing not only in the notorious arabino series but in
all four pentopyranosyl systems.13 This behavior is believed
to be a consequence of interstrand base-stacking in the

pentopyranosyl oligonucleotide series2 and demonstrates that
an oligonucleotide system can become overly tolerant toward
nucleobase mismatches when its level of base-pairing
strength is much higher than that of the natural nucleic acids.

Our findings on the pairing of isomeric pentopyranosyl
(4′f2′) oligonucleotides point to the possibility that a large
number of chimeric oligonucleotide systems with backbones
containing a random distribution of the four different
pentopyranosyl backbone units would share the cross-pairing
potential14 of the pentopyranosyl family. An entire family
of oligonucleotide systems may thus cross-communicate by
base-pairing between oligonucleotide strands whose consti-
tutional diversity is based not only on variation of base
sequence but also on a library of backbone chimeras. This
is an aspect that deserves attention in the etiological context.15

The members of the pentopyranosyl (4′f2′) oligonucleo-
tide family do not cross-pair with RNA or DNA; their ability
to recognize complementary base sequences is orthogonal
to that of the natural nucleic acids. Thus far, we have
encountered two families of oligonucleotide systems with
pairing capabilities that are mutually orthogonal as well as
orthogonal to those of the natural nucleic acids; the other
family is homo-DNA and some of its relatives.2,16 Orthogo-
nality of base-pairing capability, specifically with respect to
DNA, could prove to be a valuable property of artificial
oligonucleotide systems, for example, in the context of
synthetic nanochemistry.17
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expected whenø values change toward-180°, provided the 4′-phosphodi-
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(14) We have tested two examples: 4′-(plT-prT-plT-prT-plA-prA-plA-
prA)-2′, Tm ) 52 °C (c ) 19 µM in 1.0 M NaCl) and 43°C (c ) 10 µM
in 0.15 M NaCl) respectively; 4′-(prT-plT-prT-plT-prA-plA-prA-plA)-2′,
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